数据挖掘和数据分析的区别

数据挖掘和数据分析的区别

数据分析就是对数据进行分析,是指根据分析目的,用适当的统计分析方法及工具,对收集来的数据进行处理与分析,提取有价值的信息,发挥数据的作用。数据挖掘是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。

数据分析主要实现三大作用:现状分析、原因分析、预测分析(定量)。数据分析的目标明确,先做假设,然后通过数据分析来验证假设是否正确,从而得到相应的结论。

主要采用对比分析、分组分析、交叉分析、回归分析等常用分析方法。数据分析一般都是得到一个指标统计量结果,如总和、平均值等,这些指标数据都需要与业务结合进行解读,才能发挥出数据的价值与作用。

数据挖掘主要侧重解决四类问题:分类、聚类、关联和预测(定量、定性),数据挖掘的重点在寻找未知的模式与规律;如我们常说的数据挖掘案例:啤酒与尿布、安全套与巧克力等,这就是事先未知的,但又是非常有价值的信息。

主要采用决策树、神经网络、关联规则、聚类分析等统计学、人工智能、机器学习等方法进行挖掘。输出模型或规则,并且可相应得到模型得分或标签,模型得分如流失概率值、总和得分、相似度、预测值等,标签如高中低价值用户、流失与非流失、信用优良中差等。综合起来,数据分析与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策,所以数据分析与数据挖掘构成广义的数据分析

发表评论

您的电子邮箱地址不会被公开。