大数据分析现状是什么?

发布时间: 2020-08-11

数据分析成为未来职业的发展趋势,无论什么岗位都需要拥有数据分析的能力,因此数据分析培训学习成为了潮流,学数据分析的人越来越多,学习的过程中遇到的问题也很多,专业的答疑,是职业生涯最重要的一环。

作为全球互联网的前沿概念,大数据主要包括两方面特征:一方面整个社会的信息量急剧增长,另一方面个人可获取的信息也呈指数增长。从科技发展的角度来看,“大数据”是“数据化”趋势下的必然产物!并且随着这一趋势的不断深入,在不远的将来我们将身处于一个“一切都被记录,一切都被数字化”的时代。在这种背景下,对大数据的有效存储以及良好地分析利用变的越来越急迫。而数据分析能力的高低决定了大数据中价值发现过程的好坏与成败。数据分析是数据处理流程的核心,因为数据中所蕴藏的价值就产生于分析的过程。

所谓“大数据分析”,其和以往数据分析的最重要的差别在于数据量急剧增长。由于数据量的增长,使得对于数据的存储、查询以及分析的要求迅速提高。从实际操作的角度看,“大数据分析”需要通过对原始数据进行分析来探究一种模式,寻找导致现实情况的根源因素,通过建立模型与预测来进行优化,以实现社会运行中各个领域的持续改善与创新。从行业实践的角度看,只有少数几个行业的部分企业,能够对大数据进行基本分析和运用,并在业务决策中以数据分析结果为依据。这些行业主要集中在银行与保险,电信与电商等领域。以银行业为例,目前大型国有银行在其主营业务中均引入了数据分析,但深度尚可,广度不够,尚未扩充到运营管理的所有领域;而中小银行在数据分析方面的人员与能力建设尚处于起步阶段。对于支撑起我国庞大国民生产总值的建筑业、制造业以及贸易行业,其数据分析应用远远没有进入规模化发展阶段,这些行业在IT方向的开支主要集中在公司日常的流程化管理领域。从技术发展的角度看,一些已经较为成熟的数据分析处理技术,例如商业智能技术和数据挖掘技术,已经在多个行业领域里得到广泛和深入的应用。最典型的就是电商行业,运用这些技术对行业数据进行分析,对提高行业的整体运行效率以及增加行业利润都起到了极大的推动作用。但对于像Hadoop、非结构化数据库、数据可视化工具以及个性化推荐引擎这样的新技术,其较高的技术门槛和高昂的运营维护成本使得国内只有少数企业能够将其运用到深入分析行业数据中。从数据来源的角度看,在能够实现数据化运营的企业中,绝大多数仅仅完成了依靠企业自身所产生的数据解决自身所面临的问题,并且是依据问题来收集所需要的数据。而仅有极少数互联网企业能够发挥出大数据分析的真正价值:同时运用企业外部和内部的数据来解决企业自身的问题,通过数据分析预测可能出现的问题,并依据数据分析的结果进行商业决策。在一定程度上实现了由数据化运营向运营数据的转变。

发表评论

您的电子邮箱地址不会被公开。